CS3DB3/SE4DB3/SEM03 TUTORIAL

Xiao Jiao Wang Jan 23/25,2013

Introduction

Office Hours

Wednesday 1:30 -2:30pm, ITB 116

- Email
 - wangxj2@mcmaster.ca

Outline

- Relational Operations
- Introduction to SQL

E-R MODEL (entity sets)

- An entity is an object that exists and is distinguishable from other objects.
- An entity set is a set of entities of the same type that share the same properties.
 - We use rectangles represent entity sets.

E-R MODEL(relationship sets)

- A relationship is an association among several entities.
- A relationship set is a set of relationships of the same type.
 - we use diamonds to represent relationship set.

E-R MODEL (attributes)

- The properties of an entity is represented by a set of attributes.
 - We use ellipses to represent attributes.
 - An entity set with an attribute

A relationship set with an attribute

E-R MODEL (attributes)

Simple and composite attributes

Single-valued and multi-valued attributes

E-R MODEL (mapping)

Many-to-many

One-to-many

E-R MODEL (mapping)

E-R MODEL (participation)

Total participation

E-R MODEL (specialization)

E-R MODEL (primary key)

Primary key

E-R MODEL (weak entity sets)

- Weak Entity Sets
 - Identifying relationship
 - Discriminator (Partial key)

E-R MODEL (aggregation)

- One limitation of the E-R model
 - Can not express relationships among relationships
- Aggregation
 - Allow us to treat a relationship set as an entity set for purposes of participation in (other) relationships.

E-R MODEL (aggregation)

Example:

E-R MODEL (example)

Automobile company

Relational Operations (select)

- Select operation selects tuples that satisfy a given predicate.
 - It selects rows of the data
- Operator \rightarrow sigma (σ)
- Example:

Product name	Unit price
Melon	800G
Apple	120G

SELECT Product name Where Unit Price > 500G

Melon

Relational Operations (Cartesian-product)

 Concatenates tuples of one relation to tuples of other relations.

Name

Price

Code

Place

Spain

France

Canada

Spain

France

Canada

- Operator \rightarrow cross (x)
- Example:

Relational Operations (union)

- Taken between compatible relations. (same arity, same domain)
- Duplicate tuples are removed.
- ♦ Operator → U
- Example:

					name	price	
Product	Unit		Product	Unit		Melon	800G
name	ne price name price		Strawberrv	150G			
Melon	800G		Melon	800G		A] .	1200
	150G U	11		1500		Apple	1206
Strawberry		Strawberry	150G	I	Chestnut	100G	
Apple	120G		Chestnut	100G		Ranana	350G
			D	0500		Dununu	5500
Lemon	200G		Banana	350G		Lemon	200G

Product

Unit

Relation Operations (set different)

- Find tuples that are in one relation but are not in another relation
- Taken between compatible relations. (same arity, same domain).
- Duplicate tuples are removed.

• Operator
$$\rightarrow$$
 –

Product name	Unit price		Product name	Unit price	Product	Unit
Melon	800G	-	Melon	800G	name	price
2 1					Apple	120G
Strawberry	150G		Strawberry	150G	Lomon	2000
Apple	120G		Chestnut	100G	Lemon	2000
Lemon	200G		Banana	350G		

Relation Operations (set intersection)

- Taken between compatible relations. (same arity, same domain)
- Duplicate tuples are removed.
- ♦ Operator $\rightarrow ∩$

Product name	Unit price		Product name	Unit price	Product name	Unit price
Melon	800G	$\mathbf{\cap}$	Melon	800G	Melon	800G
Strawberry	150G		Strawberry	150G	Strawberry	150G
Apple	120G		Chestnut	100G		1400
Lemon	200G		Banana	350G		

Relation Operations (natural join)

- Allow us to combine certain selections and a Cartesian-product into one operation
- Operator $\rightarrow \bowtie$

Code	Name	Price		Date	Code	Quantity
101	Melon	800G		11/1	102	1,100
102	Strawberry	150G	\bowtie	11/1	101	300
103	Apple	120G		11/5	103	1,700
104	Lemon	200G		11/8	101	500

Date	Code	Name	Price	Quantity
11/1	101	Melon	800G	300
11/8	101	Melon	800G	500
11/1	102	Strawberry	150G	1,100
11/5	103	Apple	120G	1,700

Introduction to SQL

- Select-From-Where Statements
 - SELECT desired attributes
 - FROM one or more tables
 - WHERE condition about tuples of the tables

Introduction to SQL

- Example: (using the university schema)
 - A) Find the names of all students who have taken at least one Comp. Sci. course; make sure there are no duplicate name in the result.
 - Solution:
 - select name
 - from student natural join takes natural join course
 - where course.dept = 'Comp. Sci.'

Introduction to SQL

- B) Fine the IDs and names of all students who have not taken any course offering before Spring 2009
- Solution:
 - select id, name
 - From student
 - Except
 - Select id, name
 - from student natural join takes
 - where year<2009

 Note: except operator eliminates duplicates, so there is no need to use select distinct

Reference

or. Tim Brailsford ,

http://www.cs.nott.ac.uk/~tjb/dbs/G64DBS.10.03.pdf