CS3DB3/SE4DB3/SEM03 TUTORIAL

Xiao Jiao Wang
Jan 23/25,2013

Introduction

- Office Hours
- Wednesday 1:30-2:30pm, ITB 116
- Email
- wangxj2@mcmaster.ca

Outline

- E-R MODEL
- Relational Operations
- Introduction to SQL

E-R MODEL (entity sets)

- An entity is an object that exists and is distinguishable from other objects.
- An entity set is a set of entities of the same type that share the same properties.
- We use rectangles represent entity sets.
- Example:

```
customer
```


E-R MODEL(relationship sets)

- A relationship is an association among several entities.
- A relationship set is a set of relationships of the same type.
- we use diamonds to represent relationship set.
- Example:

E-R MODEL (attributes)

- The properties of an entity is represented by a set of attributes.
- We use ellipses to represent attributes.
- An entity set with an attribute

- A relationship set with an attribute

E-R MODEL (attributes)

- Simple and composite attributes

- Single-valued and multi-valued attributes

E-R MODEL (mapping)

- Many-to-many

- One-to-many
id

E-R MODEL (mapping)

- One-to-one

E-R MODEL (participation)

- Partial participation

- Total participation

E-R MODEL (specialization)

- Specialization

- Disjoint

E-R MODEL (primary key)

- Primary key

E-R MODEL (weak entity sets)

- Weak Entity Sets
- Identifying relationship
- Discriminator (Partial key)

Identifying(owner) entity set Identifying relationship
weak entity set

E-R MODEL (aggregation)

- One limitation of the E-R model
- Can not express relationships among relationships
- Aggregation
- Allow us to treat a relationship set as an entity set for purposes of participation in (other) relationships.

E-R MODEL (aggregation)

- Example:

E-R MODEL (example)

- Automobile company

Relational Operations (select)

- Select operation selects tuples that satisfy a given predicate.
- It selects rows of the data
- Operator \rightarrow sigma ($\boldsymbol{\sigma}$)
- Example:

Product name	Unit price
Melon	800 G
Apple	120 G

SELECT Product name
Where Unit Price > 500G

Melon

Relational Operations

(Cartesian-product)

- Concatenates tuples of one relation to tuples of other relations.
- Operator \rightarrow cross (x)
- Example:

Name	Price	Code	Place
		12	Canada
Melon	800G	23	Spain
Apple	120G	25	France
$\begin{gathered} \text { r } \\ \text { (2 rows) } \end{gathered}$		$\begin{gathered} \mathrm{s} \\ \text { (3 rows) } \end{gathered}$	

Name	Price	Code	Place
Melon	800G	12	Canada
Melon	800G	23	Spain
Melon	800G	25	France
Apple	120G	12	Canada
Apple	120G	23	Spain
Apple	120G	25	France

Relational Operations (union)

- Taken between compatible relations. (same arity, same domain)
- Duplicate tuples are removed.
- Operator \rightarrow U
- Example:

Product name	Unit price	Product name	Unit price
Melon	800G	Melon	800G
Strawberry	150G	Strawberry	150G
Apple	120G	Chestnut	100G
Lemon	200G	Banana	350G

Product name	Unit price
Melon	800 G
Strawberry	150 G
Apple	120 G
Chestnut	100 G
Banana	350 G
Lemon	200 G

Relation Operations (set different)

- Find tuples that are in one relation but are not in another relation
- Taken between compatible relations. (same arity, same domain).
- Duplicate tuples are removed.
- Operator \rightarrow -

Product name	Unit price	Product name	Unit price	Product name	Unit price
Melon	800G	Melon	800G		
Strawberry	150G	Strawberry	150G	Apple	120G
Apple	120G	Chestnut	100G	Lemo	200G
Lemon	200G	Banana	350G		

Relation Operations (set intersection)

- Taken between compatible relations. (same arity, same domain)
- Duplicate tuples are removed.
- Operator $\rightarrow \mathrm{n}$
- $\mathrm{r} \cap \mathrm{s}=\mathrm{r}-(\mathrm{r}-\mathrm{s})$

Product name	Unit price
Melon	800 G
Strawberry	150 G
Apple	120 G
Lemon	200 G

Product name	Unit price	Product name	Unit price
Melon	800G	Melon	800G
Strawberry	150G	Strawberry	150G
Chestnut	100G		
Banana	350G		

Relation Operations (natural join)

- Allow us to combine certain selections and a Cartesian-product into one operation
- Operator $\rightarrow \bowtie$

Code	Name	Price	め	Date	Code	Quantity
101	Melon	800G		11/1	102	1,100
102	Strawberry	150G		11/1	101	300
103	Apple	120G		11/5	103	1,700
104	Lemon	200G		11/8	101	500

Date	Code	Name	Price	Quantity
$11 / 1$	101	Melon	800 G	300
$11 / 8$	101	Melon	800 G	500
$11 / 1$	102	Strawberry	150 G	1,100
$11 / 5$	103	Apple	120 G	1,700

Introduction to SQL

- Select-From-Where Statements
- SELECT desired attributes
- FROM one or more tables
- WHERE condition about tuples of the tables

Introduction to SQL

- Example: (using the university schema)
- A) Find the names of all students who have taken at least one Comp. Sci. course; make sure there are no duplicate name in the result.
- Solution:
- select name
- from student natural join takes natural join course
- where course.dept = 'Comp. Sci.'

Introduction to SQL

- B) Fine the IDs and names of all students who have not taken any course offering before Spring 2009
- Solution:
- select id, name
- From student
- Except
- Select id, name
- from student natural join takes
- where year<2009
- Note: except operator eliminates duplicates, so there is no need to use select distinct

Reference

- Dr. Tim Brailsford ,
http://www.cs.nott.ac.uk/~tjb/dbs/G64DBS.10.03.pdf

